Predicting Stroke

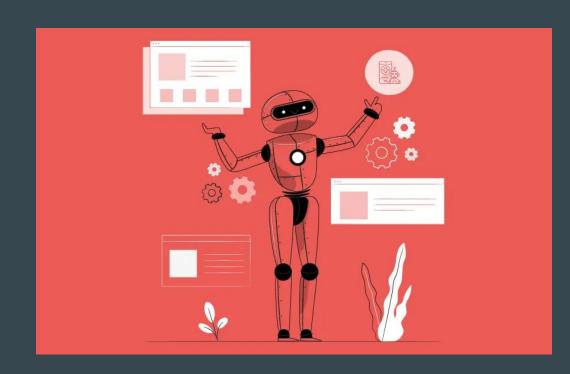
Leveraging Machine Learning Techniques in Electronic Health Records

Introduction

Final Project: Machine Learning

Outcome Prediction: Stroke

Predictors: Electronic Health Records (EHR)



Research Focus

Objective:

Predict stroke using machine learning on electronic health records (EHR).

Key Questions:

- Can machine learning models accurately predict stroke outcomes?
- 2. How do top risk factors affect predictive power?
- 3. Can gender-specific models generalize across genders?

Data Description

Source: Synthea Stroke Synthetic Patient Data Series for Risk Prediction ML Chen, AJ (2022)

Sample Size: 32,034 Patients

Outcome: Stroke

Stroke: 8,197 (25%)

No Stroke: 23,837 (75%)

Dimensions:

- Patient Number
- Stroke Outcome Label
- 800 EHR Variables
 - Lab Results
 - Survey Findings
 - Procedures
 - Diagnosis
 - Medical History
 - Medications
 - Immunizations
 - Allergies

High Dimensional, Sparse Data

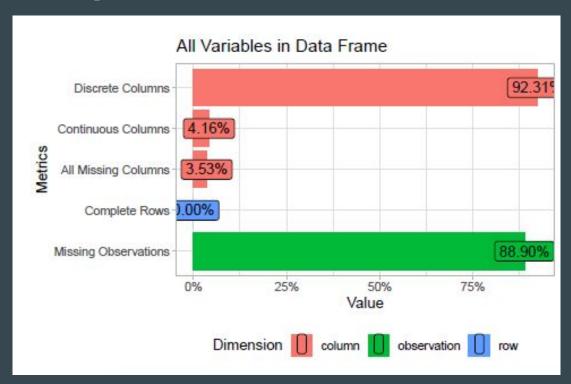
High Dimensionality: 800

Variables

Row Sparsity: 0% of rows are complete

Overall Sparsity: 88.9% of data

is blank



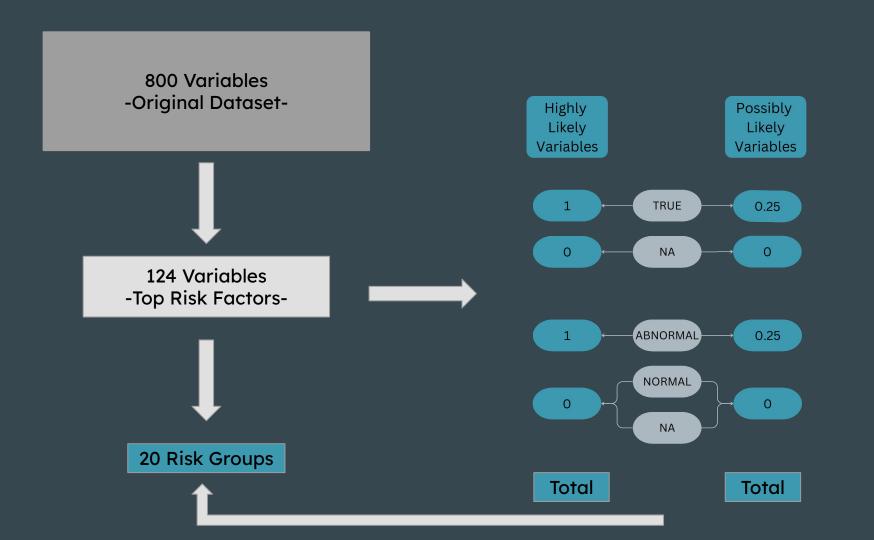
Top Risk Factors for Stroke

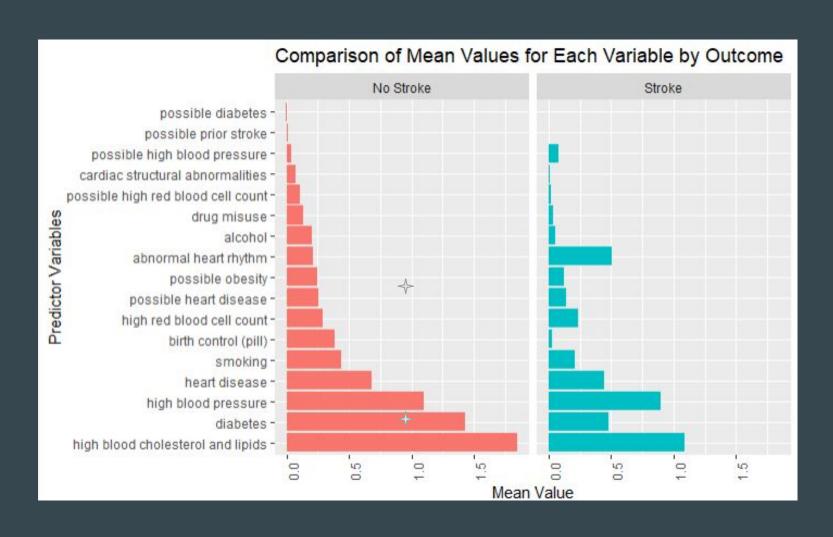
- 1. High blood pressure
- 2. Heart disease
- 3. Diabetes
- 4. Smoking
- 5. Birth control pills
- 6. History of TIAs (mini-strokes)
- 7. High réd blood cell count
- 8. High blood cholesterol and lipids
- 9. Lack of exercise
- 10. Obesity
- 11. Excessíve alcohol use
- 12. Illegal drugs
- 13. Abnormal heart rhythm
- 14. Cardiac structural abnormalities
- 15. Older age
- 16. Race
- 17. Gender

Top Risk Factors for Stroke

- High blood pressure
- 2. Heart disease
- 3. Diabetes
- 4. Smoking
- 5. Birth control pills
- 6. History of TIAs (mini-strokes)
- 7. High red blood cell coun
- 8. High blood cholesterol and lipids
- Lack of exercise
- 10. Obesity
- 11. Excessive alcohol use
- 12. Illegal drugs
- 13. Abnormal heart rhythm
- 14. Cardiac structural abnormalities
- 15. Older age
- 16. Race
- 17. Gendei

- [1] atrial fibrillation
- [2] catheter ablation of tissue of heart
- [3] insertion of biventricular
- implantable cardioverter defibrillator
- [4] 3 ml amiodarone hydrocholoride
- 50 mg/ml prefilled syringe
- [5] atropine sulfate 1 mg/ml
- injectable solution
- [6] digoxin 0.125 mg oral tablet
- [7] electrical cardioversion





Methodology

Preprocessing: Dimensionality reduction

Training 80%: Testing 20%

Feature Engineering:

- One-hot encode character variables
- Impute mean (except XGBoost models)

Model Evaluation:

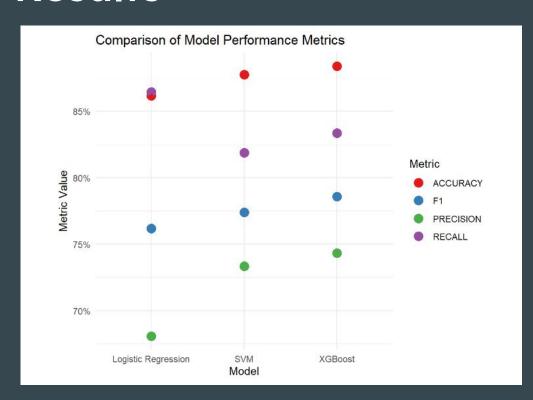
Cross-validation: 5-fold with 3-repetitions

Machine Learning Models

Logistic Regression Support Vector Machines

XGBoost

Results



Logistic Regression:Achieved the highest recall

SVM: Underperformed compared to XGBoost.

XGBoost: Delivered the best overall performance across metrics.

Interpretability Matters:
Prioritized over purely
achieving the best metrics.

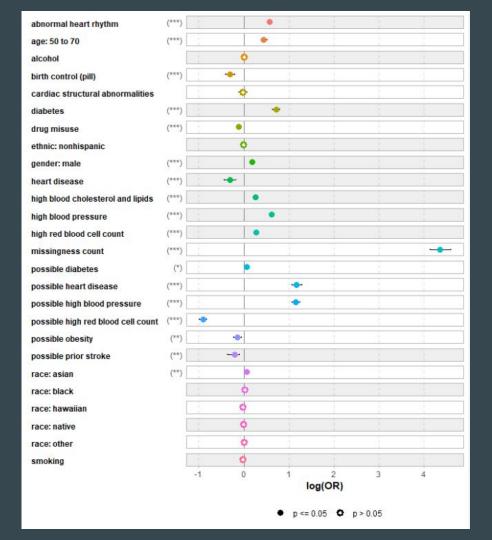
Key Findings

Top Predictors:

- Missingness Count
- High blood pressure
- Heart disease
- Diabetes
- Abnormal heart rhythm

Challenges:

- Addressing missing data
- Balancing interpretability and accuracy in medical contexts



Ethical Implications

Importance of transparency in predictive models

Ensuring equitable predictions across demographics

Mitigating potential biases in synthetic data

Further validation required with real-world EHR datasets

Conclusion

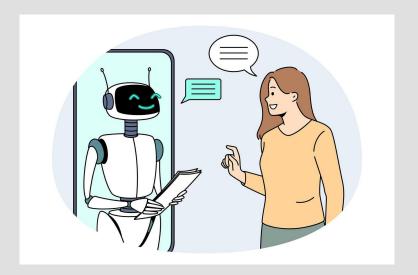
Machine learning can predict stroke.

But, Data Analysts need to work with Field Experts on data design.

Future work:

Test dataset without top risk variables.

Explore additional features like lifestyle and socioeconomic factors.



Thank You.